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This article presents Genetic Programming (GP) as a new tool for the formulations of magnetoresistance and electrical 
resistivity properties of electrodeposited CuCoNi alloys. There are no well established formulations for predicting 
magnetoresistance and electrical resistivity properties of electrodeposited alloys related to film composition. Therefore, the 
objective of this paper is to develop robust formulations based on the experimental data and to verify the use of GP for 
generating the formulations for magnetoresistance and electrical resistivity of electrodeposited CuCoNi alloys. To generate 
databases for the magnetoresistance and electrical resistivity formulations training and testing sets in total of 144 samples 
were selected at different temperatures and ratios of components. The training and testing sets consisted of randomly 
selected 123 and 21 for magnetoresistance formulation and 115 and 29 for the electrical resistivity, respectively. The paper 
shows that the GP based formulation appears to well agree with the experimental data and this is found to be quite reliable. 
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1. Introduction 
 
Magnetoresistive materials have recently attracted 

attention due to their potential technological applications 
in magnetic data storage and reading. In the presence of 
magnetic field these materials exhibit large drop in 
resistivity. This dropping resistivity so-called giant 
magnetoresistance (GMR) [1,2] effect first observed in 
Fe/Cr [3] multilayers has made these materials attractive 
due to their application in magnetoresistive devices.  

Different techniques have been used to produce 
heterogeneous alloys although the structure and therefore 
properties depend closely on the preparation techniques 
[4-7]. Electrodeposition, which is a relatively cheap 
technique, is an alternative method to other complex and 
sophisticated ones such as evaporation, sputtering, 
Molecular Beam Epitaxy and it is also suitable for 
producing multilayer and immiscible metal combinations 
by control of the electrodeposition variables. 
Inhomogeneous CuCoNi alloy films are among the 
systems exhibiting GMR. The GMR and the 
microstructure in Cu1-xCox (x = 0.06, 0.13, 0.17, 0.19, 
0.21, and 0.26) granular films prepared by 
electrodeposition were reported [8]. In order to improve 
GMR of Cu–Co systems, alloying addition such as Cr, Fe, 
Mn and Ni have been tried [9-12]. Among these elements, 
only Ni addition gives a prospect with an improved GMR 
ratio, however the reason for this remains unclear. The 
phase segregation in the Co–Ni–Cu films is not a pure 
nucleation decomposition or growth process. It is closely 
connected with the Ni content. In particular, in the Co–Ni–
Cu granular films with low Ni content, the 

magnetoresistance ratio is larger than in Co–Cu granular 
films. We previously report an experimental study on the 
crystal structure, electrical conduction and magnetic 
properties of Cu100-y-xCoyNix (x=1.56, 2.20, 2.60, 3.06, 
4.05, 5.04, 5.5, 6.55, 11.56) alloy films produced by 
electrodeposition and the effect of Ni addition on the 
GMR properties [13].  

Influence of additional element on magnetoresistance 
properties is well known in the literature. However, there 
exist no explicit formulations for estimating the 
magnetoresistance properties of electrodeposited alloys 
related to magnetic component like Nickel. For this 
purpose, empirical formulations were proposed by 
applying the genetic programming for prediction of 
magnetoresistance and electrical resistivity of CuCoNi 
alloys. 

 
 
2. Experimental details 
 
Electrodeposition of Cu–Co-Ni films was carried out 

at a constant current density from an aqueous electrolyte 
of sulfates of Cu, Co and Ni. The electrolytic bath was 
composed of CuSO4.7H2O, CoCl2.6H2O, NiSO4.6H2O, 
H3BO3, MgSO4.7H2O, CoSO4.7H2O, Na3C6H5O7.2H2O. 
The substrates for the electrodeposition were aluminum 
which was subsequently stripped from the films by using 
10% NaOH solution. The deposition was performed with a 
current density of 5 mA/cm2 at room temperature. A two-
electrode composition was used: platinum as anode and 
aluminum as cathode. The compositions of the films were 
determined using both an energy dispersive 
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spectrophotometer and an atomic absorption 
spectrophotometer. The resistivity measurements were 
determined using the usual four-point probe method in an 
applied field of ±8.5 kOe  using a Varian V- 2900 
electromagnet for the temperature depended investigation. 
The current of 0.1 mA was constant, and directed to the 
same direction of the magnetic field parallel to the film 
plane. A helium cryostat (Leybold RW2 Closed Helium 
Cryostat) was used to control the temperature variation 
with a sensitivity of ±0.2 K. The dimensions of the 
samples for the resistivity measurements were 4mm x 4 
mm. The magnetic field-MR measurements were carried 
out in an alternating magnetic field as 0.2, 0.4, 0.6, 0.8, 
1.0, and 1.2 at room temperature. The temperature 
depended MR measurements were carried out in ±8.5 kOe 
at 20 to 320 K. 

 
 
3. Genetic programming 
 
Genetic programming was proposed by Koza [14] to 

automatically extract intelligible relationships in a system 
and has been used in many applications such as symbolic 

regression [15, 16] and classification [17, 18]. A 
schematically overview of genetic programming is given 
in Fig. 1. Koza [14] explains the flowchart of GP in four 
main steps: 
1. Generate an initial population of random 
compositions of the functions and terminals of the problem 
(computer programs) 
2. Execute each program in the population and 
assign it a fitness value according to how well it solves the 
problem. 
3. Create a new population of computer programs. 
• Copy the best existing programs 
(reproduction) 
• Create new computer programs by 
mutation 
• Create new computer programs by 
crossover (sexual reproduction) 
• Select an architecture-altering operation 
from the program stored so far.  

4. The best computer program that appeared in any 
generation, the best so far solution, is designated 
as the genetic result of genetic programming.  

 

 
 

Fig. 1 Schematically overview of GP [19]. 
 

The GP creates a population of computer programs 
with a tree structure. In this study, empirical models are 

used for prediction of magnetoresistance properties of 
electrochemically deposited CuCoNi alloys. Randomly 
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generated programs are general and hierarchical, varying 
in size and structure. GP’s main goal is to solve a problem 
by searching highly fit computer programs in the space of 
all possible solutions. This aspect is the key for finding 
near global optimum solutions by keeping many solutions 
that may potentially to be close to minima (local or 
global). The creation of initial population is a blind 
random search of the space defined by the problem. The 
output of the GP is a program rather than a quantity [20].  

 
 
3.1 Brief overview of gene expression  
       programming 
 
Gene-Expression Programming (GEP) is a natural 

development of GP and it was invented by Ferriera [21]. 
GEP evolves computer programs of different sizes and 
shapes encoded in linear chromosomes of fixed length. 
GEP algorithm begins with the random generation of the 
fixed-length chromosomes of each individual for the initial 
population. Then the chromosomes are expressed and the 
fitness of each individual is evaluated based on the quality 
of the solution it represents [22].  

 
 
 
 

 
 

Fig. 2. A typical tree structure for 
)(*)/)4)53((( 122 dddddd −++  

 
 
 
Chromosomes and expression trees (ETs) are the two 

main parameters of GEP. The process of information 
decoding (from the chromosomes of the ETs) is called 
translation which is based on a set of rules. The genetic 
code is very simple where there exist one-to-one 
relationship between the symbols of the chromosome and 
the function or terminal they represent. GEP program 
utilizes two different languages: the language of genes and 
the languages of ETs. A noteworthy advantage of this is 
that it permits the user to infer exactly the phenotype given 
the sequence of a gene and vice versa; this is called Karva 
notation [22]. A typical program, representing the 

expression )(*)/)4)53((( 122 dddddd −++ is shown in 
Fig. 2. 

 

 
Fig. 3. Tree structure for magnetoresistance of CuCoNi alloys. 

 
 
4. Application of genetic programming (gep)  
 
The database built in the experimental part was used 

for the modeling of the magnetoresistance properties of 
electrodeposited CuCoNi alloys. The major task herein is 
to define the hidden function connecting the input 
variables (X1, X2, X3, X4, X5 and X6) and output Y1 and 
Y2. The expected empirical models may be written in the 
form of following equation 

 
)6,5,4,3,2,1( XXXXXXfYi =     (1) 
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The functions obtained by GEP will be used for 
estimating the relationship between film components and 
magnetoresistive and electrical resistivity characteristic of 
CuCoNi alloys. The variables used in the GEP models 
were presented in Table 1.  

Table 1.The variables used in model constructions. 
 

Code Input variable  Output 

X1 
Temperature 
(K)  Magnetoresistance % 

X2 
Resistivity 
(ρ0)  Electrical Resistivity (μΩcm) 

X3 

Resistivity 
under 
magnetic 
field (ρB)   

X4 

% Ni content 
in the film  
( %NiCo )  

X5 

% Cu content 
in the film 
( %CuCo )  

X6 

% Co content 
in the film 
(

%CoCo )   
 

 
In order to construct empirical models and to show the 

generalization capability of GEP, the database produced in 
the experimental part is subdivided into two sets, namely 
training and test, respectively. The empirical formulations 
were developed based on the former while the latter was 
employed to test the proposed models so as to measure 
their generalization capabilities [22]. Of all 144 alloys, the 

training and testing sets consisted of randomly selected 
123 and 21 mixtures, respectively. It must be kept in mind 
that the proposed empirical equations are valid for the 
ranges of training set given in Table 2. The parameters 
used within the proposed empirical models were given in 
Table 3. Even though there might be various different 
combinations of GEP parameters, running the GEP 
algorithm for all of them requires very long computational 
time. Therefore, the GEP parameters were selected 
intuitively to investigate the performance of GEP models 
to predict the magnetoresistance properties of CuCoNi 
alloys. 
 
Table 2. Ranges of experimental database used in the proposed 

GEP models. 
 

Code Parameter Min Max 
X1 Temperature (K)  20 320 
X2 Resistivity (ρ0)  0.086 1.411 

X3 
Resistivity under magnetic field 
(ρB)  0.085 1.41 

X4 

 Ni content in film at %  
( %NiCo ) 1.6 11.5 

X5 

 Cu content in film at % 
( %CuCo ) 66.6 78 

X6 

 Co content in film at % 
( %CoCo ) 16.5 31.8 

Y1 Magnetoresistance at % -0.07 -2.11 
Y2 Electrical Resistivity ρ (μΩcm) 0.086 1.411 

 
 

Table 3. GEP parameters used for proposed models. 
 

p1 Number of generation 447223 

p2 Function set  +,-,*,/,√, Power, ex, 10x, x2, x3, 3 x , Sin(x), Cos(x) 
p3 Chromosomes  30 
p4 Head size  8 
p5 Number of genes  4 
p6 Linking function Addition  
p7 Mutation rate  0.044 
p8 Inversion rate  0.1 
p9 One-point recombination rate  0.3 
p10 Two-point recombination rate  0.3 
p11 Gene recombination rate  0.1 
p12 Gene transposition rate  0.1 

 
 

The function generated for the best solutions by GEP 
algorithm to estimate the magnetoresistance and electrical 
resistivity predictions of electrodeposited alloys were 
presented in Equation 2 and 3, respectively  
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5. Performance of empirical models 
 
Predicted values achieved through the proposed GEP 

formulations are compared with the experimental results 
for the magnetoresistance and electrical resistivity in Figs. 
4 and 5, respectively. It was observed in Fig. 4 that the 
proposed GEP formulation for magnetoresistance of 
NiCuCo alloys is able to closely follow trend seen in the 
experimental data within both train and test sets.  
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Fig. 4. Evaluation of experimental and predicted magnetoresistance  a) Train set   b) Test set 
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It was observed in Fig. 5 that the proposed model for 
the electrical resistivity provided consistent predictions for 
both data sets.  

 
 

The figures fairly showed that there was a clear 
distinction between the predicted and the actual values 

when the model was applied to the test set. However, this 
model well agreed the experimental values in the train set.  
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Fig. 5.Evaluation of experimental and predicted electrical resistivity a) Train set b) Test set. 

 
 

Table 4. Statistical parameters of GEP formulations. 
 

Properties Set MSE RMSE MAE Correlation Coefficient (R) 
Train  0.00135 0.03679 0.01719 0.99872Magnetoresistance 
Test  0.00061 0.02482 0.01719 0.99621
Train  0.00145 0.03809 0.03212 0.99459  Electrical resistivity 
Test  0.00178 0.04228 0.03369 0.99278
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Statistical parameters of test and training sets of GEP 

formulations are given in the Table 4 where R corresponds 
to the coefficient of correlation; MSE is the mean square 
error, RMSE is the root mean square error; MAE is mean 
absolute error. As can be seen from Table 4, correlation 
coefficient of training set of empirical model higher than 
correlation coefficient of the test set.  

 
6. Conclusions 
 
This paper presents a new and efficient approach for 

the developing of empirical formulations of 
magnetoresistance and electrical resistivity properties of 
electrodeposited CuCoNi ternary alloys. The presented 
genetic programming approach for modeling the 
magnetoresistance properties of CuCoNi alloys strongly 
differs from the conventional methods since it does not use 
strict mathematical rules and does not derive equations in 
a rational human way of thinking.  

The proposed empirical formulations are based on a 
comprehensive experimental study. 

Because of the high precision of the models 
developed by the GEP approach, an excessive number of 
experiments and computations can be avoided, which 
leads to reduction of the costs of product development. 
The proposed GEP formulations suggested acceptable 
agreement with the experimental results. To the 
knowledge of authors, there exist no explicit formulations 
for predicting the magnetoresistive properties of 
electrodeposited CuCoNi alloys in the literature. 
Therefore, the proposed explicit formulations may be 
employed in the prediction of the magnetoresistance 
properties considered in this study. 
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